Sunday, June 28, 2020

Gel Makes Solar Panels “Sweat” to Cool Themselves

0 comments

Image credit: pixabay.com

Last month I read something interesting in the news concerning solar panels and I decided to write a post about it in my blog. It is something new in solar power technology - gel-like material makes standard solar panels “sweet” to cool themselves. Liangbing Hu, a materials scientist at the University of Maryland, College Park says: “it’s a simple, elegant, and effective way to retrofit existing solar cell panels for an instant efficiency boost.”

Typical silicon solar panels convert approximately 20% of the sun’s light into electricity. Much of the rest turns into heat, which can warm the solar panels by as much as 40°C/104°F. As we know, the heating of the panels is one of the most serious problems - solar panels are much less efficient when overheated. In fact, with every degree of temperature above 25°C/77°F, the efficiency of the solar panel drops. 

In recent years, researchers have devised materials that can suck water vapor from the air and condense it into liquid water for drinking. Among them are researchers at the University of Texas who have created a new gel-like material. Initially, the gel was created to produce clean drinking water. It proves its effectiveness and has the potential to provide a clean, sustainable water source for millions.

The gel-like material is a mix of carbon nanotubes in polymers with a water-attracting calcium chloride salt. This substance absorbs water vapor at night when the air is cold, and humidity is high. Then it causes the water vapor to condense into droplets that the gel holds. When the heat rises during the day, the gel releases water vapor. If covered by clear plastic, the released vapor is trapped, condenses back into liquid water, and flows into a storage container.

Peng Wang, an environmental engineer at Hong Kong Polytechnic University, and his colleagues figure out another use for the condensed water: coolant for solar panels. So, the researchers applied a 1-centimeter thick sheet of the gel against the underside of a standard silicon solar panel. Their idea was that during the day, the gel would pull the heat from the solar panel. It initiates an evaporation process for the water it pulled out of the air the previous night, releasing it through the bottom of the gel layer. Thus the gel-like material can make solar panels “sweat" and cool - just like sweating cools the human body. The amount of gel needed per panel depends on its size and the temperature and humidity in your location. In a desert environment with 35% humidity, a 1-square-meter solar panel required 1 kilogram of gel to cool it. In a muggy area with 80% humidity, only 0.3 kg of the gel is needed per square meter solar panel.

The temperature of these solar panels can drop to 10°C/50°F, and the electricity output of the panels can increase by 15% to 19%. In the area of solar technology, this is considerable. “In a field where engineers struggle for every 0.1% boost in power conversion efficiency, even a 1% gain would be an economic boom,” says Jun Zhou, a materials scientist at Huazhong University of Science and Technology.

One disadvantage of this solution is that rain could dissolve the calcium chloride salt in the gel, sapping its water-attracting performance. Peng Wang acknowledged this as a possible problem, despite the hydrogel sitting beneath the solar panel, and being somewhat shielded from the rain. He said he and his colleagues were working on a second-generation gel that would not degrade, even when wet.

The team is also looking at another design option that could trap and re-condense water after it had evaporated from the gel - and potentially using the collected water to clean solar panels from the dust.

Currently, over 600 gigawatts of solar power exist worldwide, providing 3% of global electricity demand. This number may increase by about five times over the next decade.

Source: sciencemag.org



Saturday, June 20, 2020

SmartFlower Solar Power System - an Alternative to Solar Panels

0 comments

SmartFlower solar power system
Image credit: smartflower.com

SmartFlower solar power system comes from Austria. It is an innovative and unique solar panel system that can be mount on the ground in your backyard. This high-tech “smart” solar power system is an alternative to rooftop mounted solar power systems.

When you install a conventional solar panel system you have some limitation like roof type and space availability while with the SmartFlower solar power system you only need to choose the place which has sufficient exposure to sunlight. Another advantage is that this portable solar panel system shaped like a flower, can follow the sun throughout the day and this is a far more efficient way of harnessing solar energy. The photovoltaic device does all of this autonomously through algorithm-based dual-axis tracking. Thus, SmartFlower can produce up to 40% more solar energy than a conventional solar panel system.

SmartFlower solar power system has a stunning design and some cool high-tech features. Its height is 16.4ft (5 meters), weighs around 650 kg, and it rotates throughout the day in the same way as sunflower petals do. The “smart” photovoltaic system occupies 194 square feet. It consists of 12 “petals” covered with solar cells, which open up every morning when the sun rises. The SmartFlower moves toward the sun at a 90-degree angle and produces approximately 2.5kW of electricity in peak sunlight conditions. When the sun goes down the petals close. 

The SmartFlower gathers information about weather conditions and takes it into account when decides whether it should be open or fold together for protection. In winds 29 mph+ the SmartFlower solar petals automatically move to a horizontal position. At 39 mph+, the solar petals will completely fold down. Also, the solar petals clean themselves through the anti-microbial brushes that are attached on the back of each petal.

The upgraded model of the SmartFlower is named SmartFlower +Plus. SmartFlower +Plus is the same as the main version but includes battery storage to store solar energy. The stored excess solar energy can cover cloudy days and peeks in consumption. SmartFlower +Plus can work on-grid and off-grid - completely independent from the grid. This model is available in two versions –one with a storage capacity of 4.6 kWh and the other with 13.8kWh storage capacity. In addition, there is another model of the SmartFlower that lets you charge electric cars. 

Besides tracking the sun and self-cleaning, other “smart” features are self-containing and self-cooling. The SmartFlower solar power system is an all-in-one complete solar energy system, with an inverter, battery storage, battery charger, monitor, and control box, all integrated into a single unit. SmartFlower solar system also has rear ventilation to keep the system up to 18°F cooler than it would be without it. That is good for solar cell efficiency, which means 5-10% more output on average.

The SmartFlower is available in eight colors (berry, ocean, amber, mermaid, pearl, lavender, jungle, and porcelain). It can be fast and easily installed (just plug and play). And by removing four bolts and one cable you can move SmartFlower anywhere you want.

According to the news, the Austrian manufacturer of the SmartFlower began bankruptcy proceedings in Germany in 2017. However, the U.S. division of SmartFlower operates independently from the original Austrian developer. So far, the SmartFlower has been installed at numerous U.S. backyards, in addition to organizations like the Detroit Zoo, Mary Baldwin University, and Virginia Wesleyan University. The United States division of SmartFlower is currently based in Boston, Massachusetts.

SmartFlower solar power system is a real alternative to solar panels. If you want to buy one of the models, you should know that before applying for all incentives and tax credits, the SmartFlower solar panel system ranges from $25,000 to $30,000. SmartFlower can generate between 4000 and 6500 kWh per year. The average home in the United States uses 10,400 kWh annually, so this will cover 40-60% of your energy bill.

You can visit the official SmartFlower website for more information.

Sources: solar.comenergysage.com & Internet



Tuesday, May 26, 2020

Styles Solar Ice-Cream Van

0 comments

Styles Solar Ice-Cream Van
                              Image credit: stylesicecream.co.uk

Britain’s first solar ice-cream van is a concept of David Baker, the owner of Styles Farmhouse Ice-Cream, based in Rodhuish, Somerset. He designed Styles Solar Ice-Cream Van to reduce fumes from diesel engines at festivals. The Styles Solar Van idea came up to him in 2016 after customers, show directors, and event organisers complained about the diesel fumes from its regular vans.

The prototype was ready in 2018 and it consisted of four solar panels. The current model has eight solar panels and was ready in May 2019. Besides solar panels on the top, the van has a big bank of batteries inside. The solar panels and the battery storage power the freezers, ice-cream makers, and coffee machines. “In full sun the van can operate for up to five to six days. On cloudy days it will run for two to three days. The system can be fully recharged using mains electricity in just four hours.”- says Baker

The solar van is built on the Peugeot Boxer Van, though other van types can be used, too. Its latest Euro 6 low emission engine will get you wherever you want but when you are on site selling ice-cream you can rely entirely on solar energy. 

The Style Solar Van has been serving ice-cream to thousands across the UK five months of the year. Baker says that his team has attended around 160 events, including music festivals and agricultural shows. He estimates that solar energy saves him around £4,000, or nearly $5,000 a year. 

Baker’s family has farmed 300-acre land for 119 years. They were growing wheat, barley and oats, and milking cows and sheep. In 1988, Baker decided to diversify his business into making and selling luxury ice-cream in order to get more income. 

Currently, Baker concentrates more on the ice-cream side of the business while other farmers cultivate crops on his land and milk the cows. Styles Farmhouse Ice Cream now has 50 employees and supplies 250 luxury ice-cream shops and works events.

On 3 December, 2019, Styles Solar Ice-Cream Van participated at Somerset County Council’s climate emergency business summit, at Taunton Rugby Club. The van was an example of how local businesses are responding to climate change by reducing their carbon footprint. This summit is part of the county council’s plan to work towards making Somerset carbon-neutral by 2030, by involving local companies in strategies that will help reduce air pollution.

The eco-friendly vehicles officially debuted at the Ice Cream and Artisan Food Show in Harrogate, the United Kingdom which took place between 11-13 February, 2020. Styles Solar Ice-Cream Van is now available commercially and it can be ordered here.

Sources: darigold.comwsfp.co.uk



Friday, May 15, 2020

Hybrid Solar Power System - the Best of Grid-Tied and Off-Grid Systems

0 comments

The hybrid solar power system is a combination of grid-tied and off-grid solar power systems. This system is described also as off-grid solar with utility backup power, or grid-tied solar with battery storage. The hybrid solar power system comes with a special hybrid inverter (sometimes referred to as a multi-mode inverter) that can transmit direct current (DC) power to and from your batteries and provides alternating current (AC) power between the grid and your home when necessary. The hybrid inverter can simultaneously manage inputs from both solar panels and battery storage, charging batteries with either solar electricity or electricity from the grid.

Solar Panels

The hybrid inverter takes advantage of changes in the utility electricity rates throughout the day. You can temporarily store whatever excess electricity your solar panels produce in batteries, and put it on the utility grid when you are paid the most for every kWh. And you can rely upon your battery stored solar electricity while electricity is expensive and switch to the grid when it is cheap. 

The ability to store and use your solar energy when desired is known as self-use or self-consumption. 

In case you have already installed a grid-tied solar panel system you also have a traditional inverter (solar inverter) which converts DC into AC. If you would like to have a hybrid solar power system you should buy battery storage and a separate battery-specific inverter. 

An option is to buy a hybrid inverter for your grid-tied solar panel system if you are planning soon to add battery storage. Thus you won’t need to purchase a separate battery-based inverter. The hybrid inverter can function as both an inverter for electricity from your solar panels and a solar battery. It combines a solar inverter and battery-specific inverter, so it can charge and discharge battery storage. On the other hand, there are some modern energy storage systems, like the Tesla Powerwall 2, which comes with an inverter already built-in, eliminating the need for a hybrid inverter. 

The hybrid solar panel system is configured in such a way that your home uses solar power first, then stored power in the battery, and then grid power. With a solar hybrid system, you are less reliant on the grid and solar battery storage is used as a back up when solar power is not available. When the stored energy is depleted, the grid is there as a backup, allowing consumers to have the best of grid-tied and off-grid solar systems. And the battery storage is discharged less frequently, which extends its life. It needs to be replaced less often and saves you the cost of purchasing a backup generator. 

The hybrid solar power system is at least half the price of an off-grid system but they are more expensive than an on-grid system – typically double the price of the grid-connected solar power system. The hybrid solar power system is also more complicated for installation and takes more space. 

In summary, the hybrid solar power system has the following advantages: 
  • gives you a continuous uninterrupted power supply 
  • stores solar electricity or low-cost electricity 
  • allows using solar power during the peak times of the electricity grid 
  • solar power is available during a blackout or grid outage 
  • reduces the power consumption from the grid 
  • you are not dependent on the weather conditions 
  • gives you more independence than on-grid solar power system


Tuesday, April 28, 2020

Off-Grid Residential Solar Power System

0 comments

There are three main solar power systems - grid-tied (on-grid, grid-connected), off-grid (stand-alone power system (SAPS), and hybrid solar (battery storage with grid-connection). Since I’ve already written about grid-tied systems, in this post I’ll give some basic information about off-grid residential solar power systems.


An off-grid solar power system is a solar panel system not connected to the grid. This means that you are completely independent of the utility grid and your solar system produces clean electricity for all your energy needs. The system consists of solar panels, an off-grid inverter, charge controller and rechargeable battery storage. An off-grid backup generator is an optional component. 

Before buying and installing an off-grid power system you should know your daily power needs. This will help determine which size system is appropriate for you. You can check out this off-grid system calculator to determine the size of the system for your off-grid home. Your solar panel system can be mounted on the roof or on the ground. 

The off-grid solar power system just like the other solar power systems works by generating electricity from solar panels. That electricity is direct current (DC), so it is converted using an inverter to alternative current (AC) and then it powers your home electronic appliances. AC is the standard form of electricity for anything that “plugs in” to utility power and it is a necessary form for the household appliances to work. 

When solar panels generate excess electricity it charges a solar battery (DC) via a charge controller. The charge controller is an essential component because it regulates the voltage and current that solar battery storage receives, to prevent overcharging and damage. And by saving the solar power in battery storage, it is possible to run your home appliances with energy from the sun, even at night or on cloudy days when solar panels produce less electricity. 

The off-grid solar power systems are much more expensive then on-grind systems due to the high prices of the batteries. It is suitable for one family home if you would like to gain complete energy independence, holiday houses, and especially for houses and farms in remote areas far away from the electricity grid. But although the off-grid solar power system is expensive this is a long-term investment that will save you money and deliver green, reliable power for decades.

See also: Solar Power Calculating Tools Online