Showing posts with label solar-powered car. Show all posts
Showing posts with label solar-powered car. Show all posts

Sunday, March 27, 2022

10 Solar Power Technology Innovations

0 comments

 


In this post I will list 10 solar power technology innovations.

1. Building Integrated Photovoltaics

Building Integrated Photovoltaics (BIPV) system is the integration of photovoltaics (PV) into the building envelope and part of building components such as roofs, skylights, façades, or windows

The photovoltaic materials are used to replace conventional building materials and convert solar energy into electricity for on-site use or export to the grid. They also have some other functions such as thermal insulation, weather protection (waterproofing, sun protection), noise protection, etc.

BIPV systems are increasingly being incorporated into the construction of new buildings because they have lower overall costs than non-integrated PV systems. BIPV systems avoid the cost of conventional materials so the cost of PV materials is reduced and their life-cycle cost is improved.

:: Solar Windows

Solar windows are a form of Building Integrated Photovoltaics (BIPV). They are windows with built-in solar cells.

Solar windows feature photovoltaic glazing and not only provide a clear view, but also convert sunlight into renewable electricity for the building. Efficiency levels are between 12% and 15%. 

It is also possible to retrofit existing windows by buying a photovoltaic film and applying it to window glass. The film is made from mostly organic materials, such as carbon, nitrogen, hydrogen, and oxygen.

Transparent solar panels are another innovation in the solar technology.

Read about companies that are producing solar energy generating windows: pv-magazine-usa.com/2021/06/22/more-than-a-view-here-are-3-solar-energy-producing-windows/

:: Solar shingles

Another type of Building Integrated Photovoltaics is solar shingles. The solar shingle idea came from DOW Chemical Company, who first unveiled it in 2009.  In October 2016, the company Tesla entered the solar shingle industry in a joint venture with SolarCity. In 2017, Tesla began marketing their solar shingles (Solar Roof tiles).

Solar shingles are solar roofing products that function as mini solar panels and are designed to look like conventional roofing materials. They resemble the size and shape of regular asphalt shingles or roof tiles and blend aesthetically with the roof unlike the bulky solar panels mounted on the roof. 

An integrated, single-piece solar rooftop made using laminated glass is another innovative product that some companies offer.

2. Solar Paint

Solar paint is an innovation in solar energy technology that promises a much cheaper and easier way to use solar energy.

There are a few different types of solar paints that are in development now, and each has its own unique way of producing energy. Most solar paint prototypes contain liquids with photovoltaic properties so that they can capture the sunlight and transform it into electricity.

Currently, the tree solar paints type that has the most potential are:

  • Quantum Dot Solar Cells (Photovoltaic Paint)
  • Perovskite Solar Paint
  • Hydrogen-Producing Solar Paint

A disadvantage of solar paint is its efficiency (3 to 8%), new efficiency record of 13.4% for a quantum dot solar cell is still much behind that of silicon-based solar panels (20 to 25%).

Solar paints are not yet available to consumers, but with further research they may be on the market soon.

3. Solar Gadgets: Portable Solar Battery Charger & Portable Solar Lighting Kit

A portable solar charger and portable solar lighting kit are useful solar gadgets. With a portable solar battery charger you can charge your cell phone, laptop, tablet, iPods, digital cameras, etc., everywhere you want.

A portable solar lighting kit is helpful as an emergency light whenever required. It is also useful as portable light for campers and hitchhikers. Typically, such a kit provides power output in 3 – 10 W and has a rechargeable battery. Read more: economictimes.indiatimes.com/small-biz/productline/power-generation/solar-lighting-kit-extremely-useful-as-emergency-lights-or-portable-lights/articleshow/69198210.cms?utm_source=contentofinterest&utm_medium=text&utm_campaign=cppst

Portable solar power helps people in developing countries who lack access to electricity and those who survived disasters.

4. Solar Transportation

An example of solar transportation is a solar-powered car. In one of my previous posts “5 Partially Solar-Powered Cars You Can Buy”  you can read some interesting information regarding solar cars. There are also solar trainssolar planes, solar yachts, solar bikes, solar scooters, etc.

5. Solar Desalination

Solar desalination is an environment-friendly technique to produce drinking water from the sea using solar energy. There are two common methods – direct (thermal) and indirect (photovoltaic).

The salt from the water is removed via a specially designed still that uses solar energy. The produced heat boils seawater and captures the water vapor, which, is in turn, cooled and condensed into fresh water.

Another solar desalination method is reverse osmosis. It is a pressure-driven process that separates fresh water from other substances via a semi-permeable membrane. It is used in large solar-powered plants. 

Solar desalination could be helpful for millions of people around the world who do not have access to fresh drinking water (coastal community, low-income people, people in developing countries, survivors of various disasters). 

Saudi Arabia meets much of its drinking water needs by desalinationYears ago, the country started to use the power of the sun to produce fresh water. 

Solar-powered desalination plants could supply water in remote desert areas where fresh water isn’t available. 

6. Bifacial Solar Panels

Bifacial solar panels produce electricity from both sides of the panels – front and backside, as they can collect sunlight reflecting from the ground. Thus bifacial solar modules perform best when mounted near reflective surfaces. For example, light-colored roofs, white tiles, swimming pools, desert sand, and much more. Bifacial solar panels are also perfect for homes with limited space due to their ability to generate more power.

Bifacial solar panels aren’t something new. Bifacial solar technology  is dating back to the 1960s and 1970s. but only with the development of Passivated Emitter Rear Cell technology their popularity had increased because it helped increase their efficiency rate (between 20% to 40%).

Currently, the market is dominated by mono facial (traditional) solar modules. Predictions are that by 2029, bifacial solar modules will make up 50% of the market share. Source: solartechadvisor.com/bifacial-solar-panels/

7. Perovskite Solar Cells

Perovskite solar cells are a group of materials with a specific crystal structure, named after the mineral with that structure – calcium titanium oxide (CaTiO3). Any type of material that has the same crystal structure as calcium titanium oxide is considered a perovskite. And this is a group of 10 or more metallic elements that exhibit photovoltaic (PV) properties.

There is an increasing interest in perovskite solar cells because, unlike silicon solar cells, they can be mass-produced through roll-to-roll processing. In addition, they are light, colorful, and can be used in non-traditional settings such as windows and contoured roofs. 

Perovskite solar cells are an interesting area of research among some other new-generation solar power technologies due to their conversion efficiency. In recent years, they have shown a rapid increase in conversion efficiency from below 4% to over 25% today.

Perovskite solar cells are considered the future of solar cells since their specific crystal structure has shown a great potential for high conversion rate and low production costs.

The most recent innovation is pairing two different PV films together  to improve module conversion (tandem solar cells). Placing perovskite solar cells on top of existing silicon PV cells increases light absorption efficiency. These tandem solar cells can capture both short- and long-wavelength light and increase conversion efficiency to almost 44% compared to silicon-only PV cells, whose theoretical efficiency limit is only 30%.  Source: www.hanwha.com/en/news_and_media/stories/sustainability/plugging-into-the-sun-how-hanwha-is-leading-with-innovations-in-solar-energy.html

8. Solar Panels and Agriculture – Agrivoltaics

In recent years, a new technique regarding solar panel installation emerged – installing solar panels on farmlands to produce clean electricity from the sun to help farmers minimize their utility costsFarmers can also sell excess clean electricity to the grid and develop a form of passive income. At the same time, a huge array of crops are growing underneath the solar panels – peppers, tomatoes, beans, carrots, kale, garlic, radishes, lettuce, and more.  

Putting solar panels on farmlands and planting crops underneath is a new scientific field known as agrivoltaics – agriculture plus photovoltaics (“agri-“ relating to food production, “-voltaic” relating to electricity production).

We all know that plants need sunlight, but some need less than others. We can shade those crops and that means they will require less water, which rapidly evaporates in an open field. In addition, plants “sweat” through a process called transpiration, which makes the solar panels overhead cooler and boosts their efficiency.

There is no need agrivoltaics to be limited to the kinds of crops people eat. The farmers might let native grasses grow wild under the panels, providing food for livestock like cattle and sheep, which would also benefit from the shade. Source: www.wired.com/story/growing-crops-under-solar-panels-now-theres-a-bright-idea/

9. Floating Solar Power System

A floating solar power system (also called floating solar, floating photovoltaic) is a term that describes solar panels mounted on platforms that float on top of a water body surface, usually reservoirs or lakes. The clean electricity is sent from this floating solar structure via submarine cables to a transmission tower.

Floating solar is a fresh innovation in solar power technology. The first floating solar power system took place in Aichi Prefecture, Japan, in 2007. The construction combined hydro-engineering with solar PV technologies. Since then, this technology has begun to spread around the world. But Japan remains a world leader in floating solar technologies.

The top four global users of floating solar power are  China, Japan, Korea, and Taiwan.

A floating solar system has a more complicated structure than traditional land-based solar installations. Therefore, it is necessary higher initial capital investment. Floating solar is a new option for renewable energy that complements existing technologies.

Although most floating solar systems are built on calm water, such as reservoirs and lakes, there are also sea-based systems. In 2014, Swimsol  launched the world’s first floating solar power plant for the sea (SolarSea) in the clear blue waters of the Maldives. Source: www.energywatch.com.my/blog/2020/10/11/10-illuminating-facts-about-floating-solar-power/

10. Solar Power Stations in Space

Solar power stations in space or the so-called space-based solar power (SBSP), is an innovative and interesting concept. It means capturing solar power in outer space and distributing it to Earth. Read the post “Solar Power Stations in Space – Science Fiction or a Future Reality?”  to learn more about this concept.

Wednesday, September 30, 2020

5 Partially Solar-Powered Cars You Can Buy

0 comments

                        Video Credit: DPC cars & Youtube.com

The creation of a solar-powered car is an ambitious project that many enthusiasts were trying to bring to reality. Unfortunately, so far are created only partially solar-powered cars, and in this post, I’m going to describe 5 of them you can buy.

1. Lightyear One is a long-rage, solar-powered electric car that has five square meters of small solar tiles, which cover the whole futuristic vehicle, from front to back, across a curved roof. The solar car has a 60kWh battery and charges at a rate of 12 km (7.5 miles) per hour while driving. It can also use electric vehicle charging stations, which provide up to 725 km (450 miles) of range on a single charge. The solar cells are 20 percent more efficient than traditional models and can add 50 - 65 km (30 - 40 miles) of range per day. The solar cells are encased in safety glass to protect them from damage. The company says that the Lightyear One is the most aerodynamic car in the world, with a drag coefficient below 0.20, although it is still in the prototype stage. 

Lightyear is the Dutch car company founded in 2016 by ex-members of Solar Team Eindhoven (STE), a team of engineering students who won the solar-powered World Solar Challenge race in 2013, 2015, and 2017. The Lightyear One car is expected to cost about €150,000 when it goes on sale in 2021.

2. A German full electric car Sono Sion developed by Sono Motors is another example of a partially solar-powered car. Thanks to its battery charge it can run 155 miles (250km). The car also has 248 solar cells spread across its body, which provide it an additional 21 miles (34km) of solar range. With a completely new manufacturing process, the solar modules are perfectly adapted to the shape of the vehicle. You can find it on the market at 25,500 EUR. The Sono Sion uses a bidirectional onboard-charger to share its power to recharge other electric vehicles.

3. The Korean car manufacture Hyundai also created a partially solar-powered car. A new version of its hybrid car Sonata (gas-electric sedan) offers built-in solar panels on its roof. The solar roof gives the car an extra 2 miles (about 3.5 km) of driving range per day, charging a car’s battery for 6 hours - both while driving and when parked in the sun. They say that between 30 and 60 percent of the car’s battery can be recharged by its solar panels. Hyundai underlines that its solar roof has a “supporting role" to its hybrid engine but for a year, it can add up to around 700 miles (1,300 km) of driving range from solar power.

The 2020 Hyundai Sonata Hybrid Limited is the first of its kind available in the United States. The Toyota Prius Prime has a solar roof available in some overseas markets, but not in the U.S. The as-tested price of the Hyundai Sonata Hybrid Limited comes to $36,430, which includes Hyundai’s 10-year warranty.

4. Toyota was the first major car manufacturer to offer the option with a solar roof incorporated in its Prius hybrid plug-in model in 2010. It generates about 50 watts of power, which is enough to provide energy to a fan which cools the cabin of the Prius when the engine is off. Later, in 2017 Panasonic has developed a solar photovoltaic car roof for the Prius PHEV, upping the wattage from 50 W to 180 W. 

Now Toyota developed their latest model Prius with solar panels, in cooperation with Sharp and NEDO (New Energy and Industrial Technology Development Organization of Japan). It uses such technology that lets the car’s battery charged while in the motion, not just when it is parked in a sunny place. The companies are working on attaching to the car's surface 0.03 mm thick solar cells. They can be attached to curved areas on cars like the roof, the hood, or the hatchback. 

The new model is still in the testing period, but it promises 860W at 34 percent efficiency, 44.5km on a full charge, and 56.3km if it's recharging while driving. The companies are hoping that by using the best solar panels and the most efficient batteries available on the market, besides experience with car-manufacturing, they can create a vehicle that might run forever. "The solar car's advantage is that, while it can't drive for a long-range, it's independent of charging facilities," said project manager at Toyota, Koji Makino.

5. California’s company Aptera Motors developed the first solar-powered electric (3-wheel, 2-passenger) vehicle that will never require charging. Besides, the car has an option to drive autonomous. The solar panels integrated into the car’s body harness the sun’s rays and provide owners with a substantial amount of free solar power. You can drive 43 miles of range per day of free solar power with a total 700W: 3 square meter/180 solar cell array. This is in addition to a 1,000-mile range battery pack, which you can charge at any time. And if there is excess power you can run electrical appliances in your home. Another option that Aptera includes is to upgrade and replace the existing solar panels on the vehicle.

The Aptera solar-powered car will cost roughly between $34,000-$59,000. The Aptera is still in the prototype stage but the company claims 10,000 vehicles will be made by 2022, and they will soon be open to taking pre-orders.

Finally, out of the list, because it is not for sale, I’m going to present an impressive model of a partially solar-powered car - Stella Era.

The Stella Era is a solar-powered, autonomous 5-person family car, developed by the Solar Team Eindhoven (STE), a multidisciplinary group of students from the Technical University Eindhoven in the Netherlands. The Stella Era has a range of 1200 km (including 300 km solar) and the ability to autonomously drive to a sunny parking spot when it is parked in the parking lot. The team also says that the Stella Era isn't just a solar-powered car, it is "a charging station on wheels”. Thankfully the innovations in charging (specifically bidirectional charging), the car can store energy and transfer it to other cars, to the grid, and into battery packs in self-sustainable homes.

So, although there is no entirely solar-powered car yet, the partially solar-powered, eco-friendly models above show that the key steps have been made and the sunny futuristic future is already here :)

whatsorb.com (Toyota), whatsorb.com (Aptera)



Tuesday, June 30, 2009

Solar-Powered Electric BlueCar soon in Europe

4 comments


Another exciting news concerning electric vehicles coming this time from Europe. Italian car designer Pininfarina and French battery manufacturer Bolloré have officially announced that they will release in 2010 a fully-electric, partially solar-powered car in Europe, named BlueCar. Previously unveiled at last years Geneva Show, the BlueCar is a fully-electric car that comes equipped with solar panels on the rooftop. The solar panels on the vehicle’s roof provides some power to the vehicle’s systems.

The four-seat, five-door hatchback vehicle is 3.65 meters long, 1.72 meters wide and 1.6 meters high. The 50kW electric motor and the LMP (Lithium Metal Polymer) batteries + a device for energy storage (supercapacitor) give the BlueCar a range of 250 km (155 miles) per charge. With modest demands the battery is able to run the car at a top speed of 80kph and provides enough thrust to enable the car reach 60kph in less than 6.5 seconds. If need be, the batteries can be fast-charged for five minutes, giving the car enough power to run 25km.

The two companies claim that to recharge the BlueCar, you should simply plug it into a traditional power socket at home or a public power outlet. It takes about six hours to recharge the car’s battery from a standard power socket, and only two hours on the future public fast-charging outlets.

The car will go into production in Italy at Pininfarina starting in 2010. Production on an industrial scale will take place between 2011 and 2017, with 60,000 of the vehicles expected to be produced by 2015.


Sources: Inhabitat » Solar Powered Blue Car Hitting the Streets in 2010, Eco Cars: Sun harvesting electric Bluecar gets real in France and Italy Bluecar by Pininfarina


Hanergy Thin-film Power Group