Tuesday, June 10, 2008

First Solar-Powered Speedboat

1 comments


The world’s first solar-powered speedboat Czeers
Credit: Czeers
Recently was announced that two Dutch researchers at the Technical University of Delft - Nils Beers and David Czap managed to develop the world's first solar-powered speedboat Czeers MK1. (a combination of their last names makes Czeers, pronounced "Cheers").

The speedboat was made from 100% black carbon fiber and covered with 150 square feet (14 square meters) of solar cells. The solar vehicle can approximately reach a top speed of 30 knots (about 35 miles / hour or 55.5 km/ph). The solar powered motor allows the boat to operate quite gentle.

The whole décor is luxurious: the boat has a LCD touch-screen control system and a fine leather interior. The approximate price is seven hundred thousand euro, or about $1.1 million.

Sources: FoxNews & Uberreview



Thursday, June 5, 2008

The Flight of Solar-Powered Aircraft Helios

1 comments

Here is a video showing compilation of test flights of the solar-powered, remotely piloted NASA's Helios aircraft.


Helios set out from Kauai in the Hawaiian Islands before 9:00 AM on Monday, August 13, 2001. Just over seven hours later, it reached 96,500 feet. Flying at about 25 miles an hour, the mission lasted nearly 17 hours, landing at 1:43 a.m. August 14, 2001

This was the first time a non-rocket powered aircraft has maintained flight this far above the earth. At this altitude above ground the sky is almost black, stars shine in the daytime, and the horizon looks curved.

Helios was an ultralight flying wing built by AeroVironment Inc, as a part of NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Covered with solar cells, Helios' impressive 247 foot wide wing exceeds the wing span and even overall length of a Boeing 747 jet airliner.

Helios had about 62,000 solar cells across the wing. The solar cells collect energy from the Sun and convert it to electricity, which runs the 14 small motors. The motors turn the 14 propellers, which are specially designed to pull the aircraft aloft even in the very thin air that's 18 miles high.

Helios was intended as a technology demonstrator, but in the extremely thin air 100,000 feet above Earth's surface, the flight of Helios also approached conditions for winged flight in the atmosphere of Mars, since the atmosphere at that height above earth replicates the atmosphere near the Martian surface.




Sunday, June 1, 2008

More Key Steps in Photovoltaic History

0 comments

Airplane Icare
The world’s most advanced solar-powered
airplane Icare
Credit: University of Stuttgart, Germany
In 1955, the first solar-powered automobile was publicly demonstrated in Chicago. It was a 15-inch Sunmobile built by William G. Cobb of the General Motors Corporation. Light energy falling on 12 selenium photoelectric cells created electric current to power a tiny electric motor. The solar automobile was one of 253 free exhibits of the General Motors Powerama, Chicago, Illinois.

In 1976 NASA’s Lewis Research Center starts the installation of 83 PV power systems on every continent except Australia.

In 1978 was installed the world's first village PV system at Papago Indian Reservation, Schuchuli, Arizona.

In 1980 ARCO Solar is the first company to produce more than 1 MW of PV modules in one year.

In 1981 Paul MacCready builds the first PV-powered aircraft known as the Solar Challenger, which flies from France to England across the English Channel. The aircraft had over 16,000 solar cells mounted on its wings, which produced 3,000 watts of power.

Volkswagen began testing PV arrays mounted on the roofs of vehicles in 1982.

In 1982 a Danish-born Australian eco adventurer Hans Tholstrup drives the first solar-powered car - the Quiet Achiever - almost 2,800 miles between Sydney and Perth in 20 days. The vehicle had photovoltaic system of 1 kW and the average speed was 23 km/h. Tholstrup is the founder of the World Solar Challenge in Australia, considered the world championship of solar car racing.

In 1984, a 1 megawatt photovoltaic electricity plant began to operate in Sacramento, California.

ARCO Solar introduced a G-4000, the first commercial thin film photovoltaic module in 1986.

The world’s most advanced solar-powered airplane, the Icare, flew over Germany in 1996. The wings and tail surfaces of the Icare are covered by 3,000super-efficient solar cells, with a total area of 21 m2.

The 11th tallest skyscraper in New York City, built in the 1990s - the Condé Nast Building, officially 4 Times Square - includes building integrated photovoltaic (BIPV) panels on the 37th through the 43rd floors on the south and west-facing facades to produce a portion of the building’s power.

In 1999 Germany launches a 100,000 solar roofs scheme to promote the on-site generation of clean electricity.

On August 13, 2001 after long research and trial, the solar powered wing aircraft Helios set an unofficial world record by a winged aircraft of flying at a sustained altitude above 96,000 feet (29,250 m) for 40 minutes. Helios is a remotely operated (by two controllers using computers on the ground), solar powered aircraft developed by NASA and AeroVironment Inc.

In 2002 Japan installed 25,000 solar rooftops.



Wednesday, May 28, 2008

Bringing PV Cells from Space back down to Earth

2 comments

PV cells
During the 1960s and early 1970s the use of solar cells in space flourished but down on Earth electricity from the sun seemed not very perspective option. The high costs of the PV cells made them uneconomical for use on the earth where low price is the main factor.

In the early 1970's a way to lower to cost of solar cells was discovered. Dr. Elliot Berman, with financial help from Exxon Corporation, designed a significantly less costly solar cell by using a poorer grade of silicon and packaging the cells with cheaper materials. This brought the price down from $100 per watt to around $20 per watt.

The energy crises of the 1970s led to a worldwide push for alternative renewable sources of energy, and photovoltaic were seen as a possible solution. Major research activities in the field took place and the main objective of photovoltaic research has been to reduce costs in order to bring solar power to people.

Significant efforts were made to develop PV power systems for residential and commercial uses, both for stand-alone, remote power as well as for utility-connected applications. The photovoltaic industry attracted the interest of large energy companies and government agencies. With their investment of capital, tremendous improvements in manufacturing, performance and quality of PV modules were possible.

In the 1980s, photovoltaics became a popular power source for consumer electronic devices. PV cells were incorporated in watches, radios, lanterns and other small battery-charging applications. During the same period, international applications for PV systems to power water pumping, refrigeration, telecommunications, rural health clinics, and off-grid households increased dramatically, and remain a major portion of the present world market for PV products.



Friday, May 23, 2008

Photovoltaics and the Space Industry

0 comments

The International Space Station
The International Space Station in December, 2001. Credit: the crew of STS-108, NASA
Starting in the 1950s and 60s, the space industry was the first market for photovoltaics. Photovoltaics were light and the "fuel" is both weightless and free for the taking. The high costs were never an issue since money was never a problem with the space industry.

In 1954 Bell Laboratories built the first photovoltaic module. It was billed as a solar battery and was mostly just a curiosity as it was too expensive to gain widespread use. Bell Labs used a new process called the Czochralski process to develop the first crystalline silicon photovoltaic cell with an efficiency of about 4 percent. The new technology got the first major commercial push when NASA integrated it into its new space program.

In 1955, the preparation on satellite energy supply by solar cells began. Western Electric put for sale commercial licenses for solar cells production. Hoffman Electronics - Semiconductor Division introduced a commercial photovoltaic product with 2 % efficiency for US$ 25 per cell with 14 mW peak power. The energy cost was US$ 1,785 per W.

In 1957, Hoffman Electronics introduced a solar cell with 8 % efficiency. A year later, in 1958, the same company introduced a solar cell with 9 % efficiency. The first radiation proof silicon solar cell was produced for the purposes of space technology. On 17th March 1958, the first satellite powered by solar cells, Vanguard I, was launched. The system ran continuously for 8 years. Two other satellites, Explorer III and Vanguard II, were launched by Americans, and Sputnik III by Russians.

In 1959, Hoffman Electronics introduced commercially available solar cells with 10 % efficiency. Americans launched the satellites Explorer VI with photovoltaic field of 9,600 cells and Explorer VII.

In 1962, Bell solar cells powered Telstar, the world's first communications satellite.

1964 - NASA launches the first Nimbus spacecraft - a satellite powered by a 470-watt photovoltaic array.

In 1965, the Japanese scientific programme for Japanese satellite launch commenced. The following year, in 1966, NASA launches the first Orbiting Astronomical Observatory, powered by a 1-kilowatt photovoltaic array, to provide astronomical data in the ultraviolet and X-ray wavelengths filtered out by the earth’s atmosphere.

Today, the space industry is still a significant user of photovoltaics since they play an important role in space, providing electrical power to satellites in an orbit around the Earth. Solar cells power virtually all satellites, including those used for communications, defence, and scientific research. More than 600,000 flight-proven solar cells are powering over 60 satellites.

The International Space Station uses multiple solar arrays to power all the equipment on board. The success of the space and planetary exploration missions often depends on their on-board PV power sources — providing power for experiments and for getting the data back to Earth. The three Mars rovers - Pathfinder rover Sojourner, Spirit and Opportunity, completed their missions successfully, powered by PV.
See also: http://www.aerospaceweb.org/question/spacecraft/q0298b.shtml and http://mars.jpl.nasa.gov/MPF/roverpwr/power.html)